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Spin-up flows of a compressible gas in a finite, closed cylinder from an initial state 
of rest are studied, The flow is characterized by small reference Ekman numbers, and 
the peripheral Mach number is O( 1). Comprehensive numerical solutions have been 
obtained for the full, time-dependent compressible Navier-Stokes equations. The 
details of the flow, temperature, and density evolution are described. In the early 
phase of spin-up, owing to the thermoacoustic disturbances caused by the 
compressible Rayleigh effect, the flows are oscillatory, and this oscillatory behaviour 
is pronounced at higher Mach numbers. The principal dynamical role of the Ekman 
layer is dominant over moderate times of orders of the homogeneous spin-up 
timescales. Owing to the density stratification in the radial direction, the Ekman 
layer is thicker in the central region of the interior. The interior azimuthal flows are 
mainly uniform in the axial direction. As the Mach number increases, the rate of spin- 
up in the interior becomes slower, and the propagating shear front is more diffusive. 
Explicit comparisons with the results for an infinite cylinder are made to ascertain 
the contributions of the endwall disks. In contrast to the usual incompressible spin- 
up from rest, the viscous effects are relatively more important for the case of a 
compressible fluid. 

1. Introduction 
Spin-up refers to a general class of transient motion of a confined fluid in response 

to an externally imposed change in the rotation rate of the container. The classical 
treatise of Greenspan & Howard (1963) dealt with the linearized spin-up flows that 
occur during transition from the initial rotation rate 51-A51 to the final rate 51, 
where the Rossby number 8 3 AQ/Q was assumed to be infinitesimally small. Here, 
the flows of interest are characterized by the smallness of the reference Ekman 
number, E = ,u/po51He, where ,u is the reference viscosity of the fluid, po the 
reference density, and H the characteristic length of the container. For the basic 
problem of linearized spin-up from an initial non-zero rotation rate, Greenspan & 
Howard showed that the crucial element in transient fluid dynamics is the formation 
of Ekman layers on the endwall disks. Owing to the radially outward motion in the 
Ekman layers, the fluid is drawn from the interior region (Ekman suction 
mechanism), which in turn leads to a radially inward meridional circulation in the 
interior. This meridional circulation in the bulk of the interior, where the direct 
effects of viscosity are small, spins the fluid up by angular momentum advection and 
vortex-line stretching. This elegant analytical account has since occupied the 
centrestage for modern studies of spin-up in a container. 
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One canonical problem of strongly nonlinear processes is spin-up from an initial 
state of rest to a finite rotation rate Q. In this case, the above-defined Rossby number 
is unity, and the transient flow entails rather complex features that are unique to 
such nonlinear dynamics. Wedemeyer (1964), expanding many of the basic ideas of 
Greenspan & Howard, derived an approximate formulation to tackle the transient 
behaviour of the dominant azimuthal velocity in the interior. Specifically, for a 
cylindrical container (radius L and height H )  of aspect ratio HIL % 0(1),  
Wedemeyer's model demonstrated that the interior flow is divided into two distinct 
regions separated by a velocity shear front which is propagating radially inward, The 
essential role played by the Ekman-layer suction mechanism was clearly delineated : 
as remarked earlier, the meridional circulation, driven by the Ekman-layer pumping, 
brings about the overall adjustment of the interior fluid. The timescale for global 
accomplishment of spin-up is given by E - b - ' ,  which conforms with the earlier 
linearized predictions of Greenspan & Howard. The qualitative validity as well as the 
quantitative accuracy of the results of the Wedemeyer model have since been 
thoroughly discussed in a number of different experimental and numerical contexts 
(e.g. Watkins & Hussey 1973,1977 ; Weidman 1976; Kitchen 1980; Hyun et al. 1983; 
Choi, Kim & Hyun 1989). 

Most spin-up studies to date have almost exclusively been concerned with 
incompressible fluids. The early investigations of Greenspan & Howard (1963) and 
Wedemeyer (1964), as well as the later works cited above, addressed the problem of 
a homogeneous, incompressible fluid. Only preliminary studies were reported in the 
literature regarding the spin-up from rest of a stratified incompressible fluid (e.g. 
Greenspan 1980; Hyun 1983). These accounts of incompressible rotating fluids are 
highly relevant to geophysical fluid processes and other industrial applications. 
However, interest in the behaviour of a compressible fluid in a rapidly rotating 
environment has lately increased because of the connection with technological 
advances in high-powered gas centrifuges and turbomachinery. The extremely high 
rotational speed of these devices, of the order of 10000 r.p.m. and above (Sakurai & 
Matsuda 1974), implies that the compressibility effect, together with the strong 
density stratification that builds up in the direction perpendicular to the rotation 
axis, become vitally important for overall analyses of the transient motion of a 
compressible fluid. 

As succinctly pointed out by Sakurai & Matsuda (1974), one immediate 
consequence of such rapidly rotating gas flows is that the conventional Boussinesq- 
fluid assumption is no longer applicable. Some of the general steady-state features of 
the fundamental aspects of the gasdynamics under strong rotation were disclosed by 
several analytical approaches, notably by for example Sakurai & Matsuda (1974), 
Bark, Meijer & Cohen (1978), Ungarish & Israeli (1984) and Park & Hyun (1990, 
1991). The topic of transient flows of a gas under extremely high rotation is a 
comparatively new discipline (e.g. Bark et al. 1978), despite the fact that the subject 
is of intrinsic interest in basic fluid dynamics as well as in engineering applications. 
It appears that, based on a literature survey, the fundamental subject of spin-up 
flows from rest, with substantial compressibility effects incorporated, has not been 
properly described. 

We propose in this paper to focus on the spin-up flow from rest of a gas in a rapidly 
rotating cylinder. As is intuitively obvious, there are certain similarities between the 
present problem and the much-studied counterpart of an incompressible, homo- 
geneous fluid. However, i t  is equally important to recognize the differences between 
the two flows. In the case of a gas under rapid rotation, owing to the fluid 
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compressibility and the establishment of density stratification in the radial direction, 
dynamic features germane to the gas flows are eminent. These features give rise to 
additional complexities, which have hitherto not been shown explicitly in the 
published literature. 

In the present study, we shall report on comprehensive results derived from 
numerical solutions to the governing full, time-dependent, compressible Navier- 
Stokes equations. In view of the extremely high rotation rates, direct 
experimental measurements are virtually non-existent. To the best of our knowledge, 
no conclusive analytical methodology has been successfully utilized to tackle these 
highly nonlinear, time-dependent fluid flows. It should be mentioned that Bark et al. 
(1978) explored several physically insightful linearized flow models, from the initial 
state of a pre-existing rotation, of a gas under strong rotation using asymptotic 
perturbation techniques. However, in the light of the overriding difficulties 
associated with analytical endeavours, full-scale numerical solutions promise to be a 
powerful alternative to capture the essentials of the transient flow characteristics. 
Past numerical simulations have been severely constrained by the requirement of 
prohibitively large computing resources as well as the formidable difficulties in 
constructing a reliable numerical code. We shall now take advantage of recent 
advances in computing capabilities, which have permitted full numerical simulations 
of the flow at hand. 

In this paper, extensive numerical results will be presented to portray the details 
of the transient flow structure. Systematic computational analyses have been made 
of the time-dependent dominant azimuthal flows using three different values of the 
peripheral Mach number, M = 1.0, 3.0, 5.0. The concomitant meridional flows are 
depicted. These disclose the dynamic roles played by the thermoacoustic modes as 
well as the profound effects of the radial density stratification build-up on the Ekman 
pumping mechanism and their interactions. Major new physics pertinent to transient 
gas flows in a rapidly rotating container will thus be identified and plausible physical 
explanations are given. Although there may be some dependence of the compressible 
spin-up timescale on the Mach number, the level of understanding derivable from the 
present numerical results is restricted to homogeneous incompressible spin-up 
timescale ( ~ - 4 ~ 2 - l ) .  

Reference should be made to the recent works of Hyun & Park (1989) and Park 
& Hyun (1989). They give the complete numerical solutions of the spin-up flows of 
a gas in a rapidly rotating infinite cylinder. Evidently, the infinite cylinder is an 
artifact to restrict the analysis to the dynamic mechanisms, excluding the 
contributions by the Ekman layers on the endwall disks. This preceding work clearly 
demonstrated that the flow behaviour is mainly controlled by the compressible 
Rayleigh effect and the curvature effect. Also, the significance of the parameter 
group EM ( = Kn, the Knudsen number) has been pointed out. The present study is an 
extention to these papers in that a finite, closed cylinder is now considered. This will 
introduce the flow elements that are caused by the contributions from the Ekman 
layers on the endwall disks. 

2. The model 
Consider a perfect gas in a finite closed cylinder of radius L and height H .  At the 

initial state, the gas is motionless at uniform temperature T, and density po. The 
relevant thermophysical properties of the gas are : p, dynamic viscosity ; K, thermal 
conductivity ; C,, specific heat at  constant pressure ; C,, specific heat at constant 
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volume; R,  gas constant; y = C,/C,.  These properties are taken to be constant. At 
the initial instant t = 0, the cylinder impulsively starts spinning about its central 
axis, which coincides with the z-axis, at angular frequency SZ. The subsequent 
axisymmetric motion of the gas is governed by the full, time-dependent, compressible 
NavierStokes equations. For convenience, we shall employ cylindrical coordinates 
( r ,  9, z), with the corresponding velocity components (u, w’, w ) ,  viewed in the rotating 
frame. These equations, expressed in non-dimensional conservative form, are 

in which 

! L O ,  
Dt 

P = PT, (6) 

The above equations were made dimensionless by using SZ-’, L ,  T,, po,  p ,  = poRT, 
as the reference values for time, length, temperature, density and pressure, 
respectively. The significant non-dimensional parameters are 

E = (p/po)/s1L2, the Ekman number ; 

M = SZL/(yRT,);, the peripheral Mach number; 

CT = pC,/K, the Prandtl number. 

For a definitive problem formulation, we shall consider a cylinder of aspect ratio 
A = H/L = 1.0. The origin of the coordinate system is located a t  the geometrical 
centre of the cylinder (see figure 1 ) .  Accordingly, the proper initial and boundary 
conditions can be stated as 

u = w = O ,  w‘=-r, T = l  a t  t = 0 ,  (7) 
u = w’= w = 0 and T= 1 a t  z = O . 5  and r =  1.0 (t  > O ) ,  (8) 
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FIQURE 1. 
u 
Schematic diagram of the coordinates. 

3. Numerical method 
We adopted an amended version of the finite-difference model originally developed 

by Harada (1980a, b). This model utilizes an explicit scheme of the Dufort-Frankel 
leapfrog type of second-order accuracy for both the time derivative and diffusion 
terms. The centred-differencing scheme of second-order accuracy is used for the space 
derivatives. The donor-cell technique is chosen for the convective terms to ensure 
numerical stability. The staggered grid arrangements are shown in figure 2. 

In accordance with the finite-difference schemes of Harada (1980a, b) ,  we have 

(p"" -p"-')/2At = - [S,(~U)"+' + S,(~W)"+'] ,  (11) 

(pT)"+'- (@?)"-I 
= - [S,(pu)"+l T" + S,(~ZU)"+' T"] - (7- 1) (pT)"+' &" 

2At 
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FIGURE 2. The arrangement of grid points p and T are defined at  0 ; u (or pu) and v' (or pv') a t  
0 ;  w ( o r p w )  at  .. N o t e p E p r .  

where 

6, #i (#i+-+i-;)/Axi 
6, 6, $? [($i+l- 6i )/Axi+i - (5i - $i-1 )/Ax<-,ln/Az< 
with @ = +($:+'+$I"-') ,  Axi+; = i (bxi+Ax,+, ) ,  Axi = +(Axi+i+Axi-$, 

where $ represents a physical variable (such as p or pu) and x denotes a coordinate. 

(i) The mass velocities (pu)"+l, (pv')"+l, (pw)"", are computed from (12)-( 14). 
(ii) The density p"+' is computed from the continuity equation ( l l ) ,  using (pu)"+l 

(iii) The pressure P + l (  = (pT)"+') is obtained from the energy equation (16). 
(iv) The values of un+l, wn+l ,  wn+' and Tn+l are obtained by driving the mass 

(v) Steps (i)-(iv) are repeated with marching in time. 
(vi) The time filtering is done every 20 cycles to avoid computational splitting 

The solution procedure is as follows: 

and (pw)"+'. 

velocities and pressure by pn+'. 

caused by the leapfrog scheme : $"+$ = +($" + #"+l). 
(vii) Steps (i)-(vi) are repeated until the desired time instant. 
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FIQURE 3. Example results of grid-sensitivity tests. Conditions are M = 5.0, z = 0.1 and the value 
of radial position is ( a )  r = 0.05; ( b )  r = 0.55; and (c) r = 0.95. The mesh networks are: Gl(27 x 17), 
G2(52 x 19), G3(102 x 20), G4(152 x 22), G5(202 x 24). 

t 

The details of computational methodology for the numerical model are discussed 
by Harada (1980a, b ) .  For the calculations, a mesh network of (102 x 20) in half of 
the ( r ,  z )  axial plane was typical. Suitable grid stretching was implemented to achieve 
higher resolution of the boundary layers. Extensive sensitivity tests on grid size were 
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FIGURE 4. Example results of grid-sensitivity tests. Conditions are M = 5.0, z = 0.1, t = 4.875. 
The mesh networks are: Gl(27 x 17), G2(52 x 19), G3(102 x 20), G4(152 x 22), G5(202 x 24). 

performed for several example runs, and the overall results were satisfactory (see the 
examples in figures 3 and 4). The present numerical method is shown to be versatile 
and sufficiently robust to capture the major dynamical elements within the ranges of 
parameters in this study. The Rayleigh wave is not a strong shock wave for the 
peripheral Mach numbers adopted in the present work, M < 5.0. (A shock wave may 
be expected for very large peripheral Mach numbers, i.e. M 2 20.0, see Harlow & 
Meixner 1961.) The Rayleigh wave in the present context can better be characterized 
as an acoustic wave (Hyun & Park 1989). Thus, in the present numerical model, no 
serious numerical difficulties, such as the shock capturing problem, were encountered. 
Considering both the computational stability and accuracy, the time interval At was 
chosen to range up to Atmax = 0.0002, which was found to be adequate to resolve the 
details of transient flows (see figure 4). All the computations were executed on a 
CRAY-2S supercomputer. For typical runs, approximately 10 h of CPU time were 
needed for a given set of parameters. 

4. Results and discussion 
As can be inferred from the non-dimensional governing equations, a given flow will 

be characterized primarily by four dimensionless parameters, E ,  M ,  up and y .  For all 
the calculations covered in the present paper, E = u = 1.0 and y = 1.2. The 
choice of these parameter values renders the problem definition somewhat artificial. 
This study has been motivated by possible applications to a rapidly rotating gas 
centrifuge. The primary objective of this paper is, as asserted earlier, to  reveal the 
lowest-order flow characteristics of compressible spin-up. The gross qualitative 
features of the results are not profoundly dependent on the choice of the exact values 
of and y .  The influence of the rapid rotation of the vessel, together with the 
compressibility effect, is reflected principally in the peripheral Mach number, M .  
Therefore, for specific quantitative comparisons of the computed results, complete 
flow details were acquired for three Mach numbers, M = 1.0, 3.0, 5.0. Note that the 
compressibility effect is proportional to M2 ; henceforth, these three values of the 
Mach number roughly represent the characteristic ranges of M2 x O( l) ,  M2 x O( lo), 
M2 2 O(20).  In the ensuing discussing, we shall use the absolute azimuthal velocity, 
w = w’+r. Since the problem is symmetric with respect to  the cavity mid-height 
z = 0, the results will be displayed only in the upper-half of the cylinder, 0 < z < 0.5, 
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FIQURE 5. Vector plots on the meridional plane at early times: (a) t = 0.49; (b)  t = 2.95; 
(c) t = 4.99. M = 5.0. 

0 < r < 1 .O. In the present set of computations, the results are restricted to isothermal 
wall boundary conditions, which makes the computational formulation easier. An 
even more important reason is that the investigations by Bark et al. of linear spin- 
up used the constant temperature wall boundary condition, and one aim of the 
present effort is to extend their work to a strongly nonlinear regime. Results using 
different thermal wall conditions will be dealt with in separate papers. For steady- 
state problems, parallel calculations including the effect of the wall thermal 
boundary condition were reported by Park & Hyun (1990, 1991). 

The explicit effect of fluid compressibility is best portrayed in the vector plots of 
meridional flows. Figure 5 ,  depicting the numerical results for M = 5.0, illustrates the 
main characteristics of gas flows in the early phase of spin-up. As is apparent in figure 
5 ( a ) ,  at small times compressible waves are observed to propagate radially inward 
from the sidewall periphery and vertically downward from the outer portion of the 
endwall disk. The abrupt start of the fast moving solid walls gives rise to viscous 
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FIQTJRE 6. Vector plots on the meridional plane at intermediate times: (a )  t = 35.4; ( b )  t = 73.8; 
( e )  t = 98.0. M = 5.0. 

heating of the adjacent fluid, which causes concomitant pressure variations and a 
velocity component normal to the walls. The flow of a gas induced by a suddenly 
started fast-moving solid wall, customarily termed the compressible Rayleigh 
problem, has been documented mostly through theoretical models for a flat plate 
(Howarth 1951; Stewartson 1955; Hanin 1960); Hyun & Park (1989) and Park & 
Hyun (1989) gave numerical solutions for this flow in a rotating cylindrical 
geometry. It is interesting to note in figure 5 ( a )  that the vertically downward 
velocities near the top endwall disk increase in magnitude with radius. This reflects 
the fact that the strength of the compressible Rayleigh flow increases as the effective 
Mach number of the sliding solid wall increases. 

At  a later time instant, as shown in figure 5 ( b ) ,  the radially inward Rayleigh wave 
is seen to continue propagating toward the central axis ; and the vertically downward 
Rayleigh wave has already reached the mid-height, been reflected at  z = 0 and is 
then seen to move vertically upward in the regions slightly above the mid-height of 
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FIGURE 7. Evolution of the density field at times (a) t = 35.4; ( b )  t = 73.8; (c )  t = 98.0. M = 5.0. 
The value of the leftmost contour is 1.0, and the contour interval is 0.5. 

the cavity. In figure 5 ( b ) ,  the beginning of the formation of the Ekman layer at the 
endwall disk and of the sidewall layer at the sidewall periphery is observed. A still 
later time instant, figure 5 ( c )  shows the reflection of the radially propagating 
Rayleigh waves at the central axis. As pointed out by Hyun & Park (1989), the 
existence of the Rayleigh waves is a salient feature of the very early stage of spin- 
up; the Rayleigh waves are produced in a compressible fluid by strong shearing 
motion of an impulsively started solid plate. Since the cylinder is finite and capped 
by the endwall disks, the overall flow field in the interior during the early phase 
displays a combination of the compressible Rayleigh effect and the early- time 
behaviour of the Ekman-layer-induced meridional flows. With further passage of 
time, the Ekman layers are strengthened, and the compressible Rayleigh effect is 
gradually outweighed by the meridional flows driven by the Ekman-layer pumping 
mechanism. 

Extending the calculations, figure 6 shows vector plots of meridional flows at 
moderate times of order of the homogeneous spin-up timescale O(,Tk2-l). At this 
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FIGURE 8. Structure of the radial velocity field, u. The axial positions are: -, z = 0.073; 
. . ., z = 0.19; ---, z = 0.31. The Mach numbers are M = 1.0 for the top row, M = 3.0 for the 
middle row, and M = 5.0 for the bottom row. Times are t = 4.99 for the left column, t = 35.4 for 
the middle column, and t = 73.8 for the right column. 

r r r 

intermediate stage, the compressible flows exhibit two distinctively different aspects 
in comparison to the incompressible flows. One notable feature of compressible flows 
is the build-up of a radial density stratification, strongly established within this time 
span. Because of the preponderance of density effects at  larger radii, the meridional 
velocities in these regions are, in general, reduced to achieve global mass continuity 
in the cavity. Consequently, as spin-up progresses, the magnitude of the meridional 
velocities tend to decrease in the outer high-density region; these changes in 
velocities are noticeable as the compressibility effect becomes appreciable. Another 
feature is the oscillatory nature of the meridional flows: the radially inward flow in 
much of the cavity interior is conspicuous in figure 6(a,  c ) ,  whereas such radially 
inward motions are very weak in figure 6 ( b ) .  This implies that there is an oscillatory 
element of meridional flow superimposed on the general adjustment process. 

In conjunction with the adjustment of the velocity field, it is of interest to examine 
the behaviour of the density field in response to the abrupt rotation of the container. 
Figure 7 shows how the density stratification, predominantly in the radial direction, 
is established in the course of the spin-up process. It is clearly shown that the 
concentration of fluid mass in the peripheral region of the container is pronounced. 

Exploiting the wealth of numerical data, the profiles of different velocity 
components a t  different times are illustrated in figures 8-10. The u-profiles at  small 
times, as shown in figure 8 (a-c), exhibit axial variations, although the variations are 
relatively small in magnitude. This is attributable to the meridional motions which 
are caused by the downward compressible Rayleigh waves emanating from the top 
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FIGURE 9. Evolution of the angular velocity fields, v/r. The contour values are 0.1,0.3,0.5,0.7 and 
0.9, beginning from the leftmost contour. The Mach numbers are M = 1.0 for the top row, M = 3.0 
for the middle row, and M = 5.0 for the bottom row. Times are t = 4.99 for the left column, t = 35.4 
for the middle column, and t = 73.8 for the right column. 

endwall disk. Owing to the presence of this meridional flow, the u-velocities display 
axial variations in the very early phase of spin-up. As emphasized in figures 5 and 6, 
compressible Rayleigh waves play a central role in determining the principal 
character of the early-time behaviour of meridional flows. Figure 8 also demonstrates 
that the radial velocities weaken considerably with time ; after times of order of the 
homogeneous spin-up timescale, the magnitude of u decreases to small values (note 
the difference in scales for the ordinates in figure 8). The dominant azimuthal 
velocities v are substantially uniform in the axial direction in the bulk of the interior 
flow field. The evolution of the global azimuthal flow fields are portrayed in figure 9 
in the form of contour maps. The profiles of the axial velocities w indicate the nature 
of the meridional flows induced by the Ekman layers. As shown in figure 10, the 
overall axial velocities are directed toward the endwalls disks at radii smaller than 
(ahead of) the propagating shear front, and are directed toward the mid-height a t  
radii larger than (behind) the front. This is qualitatively consistent with the well- 
documented behaviour of the meridional flows that occur in spin-up from rest of an 
incompressible fluid. One noteworthy feature of compressible flows is the radial 
variation of the thickess of the Ekman layer. As can be seen in figure 10, the Ekman 
layer is thickner in the central portion near the axis. This can be explained by noting 
that, owing to the presence of a strong radial stratification, in particular, a t  large 
times, the fluid in the central portion becomes rarefied. Under the assumption that 
,u remains constant, the local viscous effects, measured by the kinematic viscosity, 
v = p/p, become large a t  small radii. The thicker Ekman layer in the central portions 
is indicative of the enhanced viscous effects in these low-density regions. As 
stated by Bark et al. (1978), the thickness of the Ekman layer is scaled by Ei ,  where 
E,  = p/(ps2L2) denotes the local Ekman number. 

In order to gain further physical insight into the transient flow details, the time 
histories of the meridional velocities are recorded at a representative location in 
figure 11 for u and in figure 12 for w. The oscillatory behaviour, superposed on the 
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FIGURE 10. Axial profiles of vertical velocity, w. The radial positions are : -, r = 0.09; . . . , 
r = 0.24; -1-, r = 0.49; ----, r = 0.74; ---, r = 0.89; ---, r = 0.94; -. .-, r = 0.97. The 
Mach numbers areM = 1.0 for the top row, M = 3.0 for the middle row, andM = 5.0 for the bottom 
row. Times are t = 4.99 for the left column, t = 35.4 for the middle column, and t = 73.8 for the 
right column. 

-2L 

UE-l 

0 50 100 
t - 1 -  

FIGURE 11. Time histories of the radial velocity, u, at r = 0.5 and z = 0.25. The Mach numbers 
are: (a) incompressible fluid; (b) M = 1.0; (c) M = 3.0; (d )  M = 5.0. 
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FIGURE 12. Time histories of the vertical velacity, w, at T = 0.5 and z = 0.25. The Mach 
numbers are: (a) incompressible fluid; ( b )  M = 1.0; (c) M = 3.0; ( d )  M = 5.0. 

overall approach to the final state, is apparent. As shown in the preceding analyses 
(Hanin 1960; Harlow & Meixner 1961 ; Hyun & Park 1989; Park & Hyun 1989), this 
oscillatory nature is attributable to the presence of the propagating disturbances 
which are induced by viscous heating generated at the solid boundaries by the abrupt 
start of the rotating container. These disturbances are thermoacoustic in nature, 
and, the non-dimensional period of oscillation of these propagating disturbances 
through the compressible medium has been shown by the above-cited authors to be 
O(M). Based on similar reasoning, i s  the case of the w-plots in figure 12 the non- 
dimensional period of oscillation is given by O(M&I), since the (dimensional) axial 
distance that the disturbances trayel b,efore being reflected at  the mid height is 
( L i d ) .  It should be noted from figyre 12(a) that oscillations are discernible for an 
incompressible fluid. However, this oscillation is due to the inertial oscillation, which 
has been well explained in previous stpdies (Kitchen 1980, Warn-Varnas et al. 1978). 
For compressible fluids, these inertial oscillations are also present. However, the 
relative strength of the inertial oscillatims in comparison to the Rayleigh wave 
decreases rapidly as the cQmpres@bih$y effect increases. In  figure 12 (d )  for M = 5.0, 
for example, the inertial oscillation is 0,vershadowed by the dominant Rayleigh 
wave. Inspection of the u- and w-plots in figures 11 and 12 corroborates the above 
argument regarding the period 9f the WciHatipn approach to the final state. The 
amplitude of the oscillqtion depends mainly on the strength of the imposed thermal 
load on the boundary, which is the direct source of viscous heating of the 
compressible fluid at the solid walls. As is evident in figures 11 and 12, the amplitude 
of oscillation grows as M increases, which is in accord with the previous general 
analyses (Hyun & Park 1989). Summarizing the computational results for the 
meridional velocities, one significant conclusion is that the general spin-up process 
may be characterized by an oscillatory approach, superposed on the overall system- 
wide adjustment, to the final state. This oscillatory behaviour is more pronounced a t  
high Mach numbers. Consequently, an additional dimensional timescale, Ma-', is 
meaningful for compressible flows in order to correctly depict the transient states of 
spin-up from rest. 



428 

1.5 

P 

1.0 

0.5 

0.0 

J .  M .  Hyun and J .  S .  Park 

- 

- 

- 

- 
1 I I 
0 100 

t 

FIQURE 13. Time histories of the pressure, p ,  a t  axial position z = 0.25. The radial positions are 
( a )  T = 0.9; ( b )  r = 0.7; (c) r = 0.5; ( d )  T = 0.04. 
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FIGURE 14. Time histories of the temperature, T ,  a t  axial position z = 0.25. The radial positions 
are (a )  r = 0.9; ( b )  r = 0.7; (c) r = 0.5; ( d )  r = 0.04. 
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I n  parallel with the examination of the meridional flow structure, it is 
advantageous to  examine the radial pressure distribution as spin-up progresses. 
Figure 13 depicts the response of the pressure field. A t  locations very close to the 
sidewall periphery (see curve a) ,  a rather monotonic build-up of pressure, due to 
centrifugal compression, is evident. However, in the interior regions slightly away 
from the sidewall, the pressure decreases fairly monotonically with time owing to the 
rarefaction in these areas (see curves b,  c, d ) .  The overall temporal evolution of the 
pressure field contains the small-scale thermoacoustic oscillations. In  particular, near 
the central axis, the incoming and reflected disturbances combine to yield appreciable 
peaks (see curve d ) .  As was asserted previously (Hyun & Park 1989; Park & Hyun 
1989), the amplitudes of these oscillations are appreciable a t  early phases but they 
decay gradually afterward. 

The evolution of the temperature field is presented in figure 14. In  the regions very 
close to the sidewall periphery (see curve a ) ,  the sudden rotation of the container wall 
creates large gradients of the azimuthal flows. Owing to the associated viscous 
heating, the temperature quickly rises to a high value. As time elapses, the velocity 
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FIQURE 15. Time histories of the angular velocities, v/r, at r = 0.5 and z = 0.25. (a) Solution of the 
incompressible Wedemeyer model ; ( b )  incompressible Navier-Stokes solution ; (c) M = 1 .O;  
( d )  M = 3.0; (e) M = 5.0. 
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gradients, and consequently the viscous heating, are reduced ; the temperature 
decreases slowly accordingly. In the vicinity of the axis (see curve d ) ,  at small times 
the arrival and reflection of the thermoacoustic disturbances is responsible for the 
small increase of temperature. At  intermediate and large times, the fluid becomes 
rarefied and thus slightly cooled. 

The time histories of the dominant azimuthal velocity component, v, are displayed 
in figure 15 for three different Mach numbers. The location chosen for the plots is at 
mid-radius and a quarter-height away from the endwall, i.e. r = 0.5 and x = 0.25. 
Also shown in figure 15 is the result of the incompressible spin-up from rest, which 
was acquired by solving the full, incompressible time-dependent Navier-Stokes 
equations under the same geometrical conditions. For these incompressible 
homogeneous spin-up calculations, a numerical code was constructed following the 
well-established model of Warn-Varnas et al. (1978). For comparisons, the solution 
based on the classical Wedemayer (1964) model for the incompressible spin-up from 
rest is also included in figure 15. First, it is shown that the general rate of spin-up is 
slower as the compressibility effect increases. The propagation speed of the shear 
front, separating the non-rotating fluid and the spun-up fluid, is also slower as M 
increases. The existence of the thermoacoustically induced oscillatory modes is 
discernible for high-Mach-number flows. Scrutinity of the curve for M = 5.0 in figure 
15 reconfirms the observation that the dimensional period of this oscillation is scaled 
with O(ML2-') ; this is consistent with the prior description of the meridional flow 
fields. 

Figure 16 portrays time-sequence plots of radial profiles of the azimuthal velocity 
field along the quarter-height ( z  = 0.25). In view of the substantial axial uniformity 
of v in the bulk of the interior, these plots illustrate the general flow behaviour in 
much of the cavity. As the spin-up process progresses, a cylindrical shear front 
propagates radially inward. As remarked earlier, ahead of (at smaller radii than) the 
front, the fluid remains non-rotating. As shown in figure 16, the main differences in 
the gross characteristics of the evolving azimuthal flow field between incompressible 
and highly compressible flows are quantitative. The overall rate of spin-up is reduced 
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FIGURE 16. Radial profiles of the angular velocity, v/r, at axial location z = 0.25: ---, solution 
of the incompressible Wedemeyer model ; -. .-, incompressible Navier-Stokes solution ; -, 
M = 1.0; .... ., M = 3.0; ---, M = 5.0. Times are: ( a )  t = 4.99; ( b )  t = 35.4; ( c )  t = 73.8; 
(d )  t = 98.0. 

at higher Mach numbers. Also noteworthy is that, as M increases, the shear front 
itself becomes less distinct ; this suggests that  the neighbourhood of the shear front 
is more diffusively controlled at high Mach numbers. For the case of incompressible 
spin-up, Hyun et al. (1983) ascertained that the shear-front area represents a 
localized region of intensified viscous effects. The implications of the present 
numerical results are that, asM increases, diffusive effects are more pronounced. The 
phenomenon is reflected in the overall retardation of the global spin-up process in the 
bulk of the interior. Also, the spatial gradients of the velocity field are milder, 
especially in the vicinity of the shear front. 

In  the case of an incompressible spin-up from rest in a closed container, the angular 
momentum is mainly convected by the action of the meridional circulation, which is 
induced by the Ekman-layer pumping a t  the endwall disks. The diffusive 
contribution of the peripheral sidewall to the global spin-up process is comparatively 
minor. However, in the case of highly compressible fluids, the attainment of angular 
momentum purely by the action of the cylindrical sidewall, owing to the compressible 
Rayleigh effect (Hanin 1960; Hyun & Park 1989 ; Park & Hyun 1989a), has also been 
shown to be substantial It therefore appears that, for compressible spin-up in a 
closed container, the major mechanisms to be considered are the above two, i.e. the 
Ekman-layer-driven meridional circulation and the Rayleigh-flow effects emanating 
from the solid boundaries. It is immediately clear that separate evaluations of these 
two effects could lead to  an identification of the relative importance of the prominent 
dynamic effects. For this purpose, explicit comparisons between the present results 
for a finite closed container and the results for an infinite cylinder are useful. An 
infinite cylindrical vessel is an artifact to isolate only the Rayleigh flow effects from 
the peripheral wall since there is no contribution from endwall disks. 

Figure 17 shows time histories of the angular velocity for both a finite closed 
cylinder and an infinite cylinder : the spin-up proceeds at  faster rates in a closed finite 
cylinder than in an infinite one. The difference between the two curves represents all 
the dynamic effects associated with the presence of the endwall disks. In  the interior 
core region (see figure 17a), the principal drive for spin-up is based on the Ekman 
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FIGURE 17. Comparisons of the angular velocities, v/r, between the solutions of a finite closed 
cylinder of A = 1.0 (shown by U) and of an infinite cylinder (shown by L). M = 5.0 and E = 
The axial position of the finite cylinder is z = 0.25. The radial positions are: (a) r = 0.5; ( b )  r = 0.9. 
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FIGURE 18. Angular velocity, v/r, for a finite, closed cylinder of A = 1.0 (shown by solid line) and 
an infinite cylinder (shown by dotted line). M = 5.0, E = t = 98.0. The axial position of the 
finite cylinder is z = 0.25. 

layer on the endwall disks. The diffusion from the periphery is small a t  this far 
interior location. However, for compressible spin-up, the contribution based on the 
Rayleigh effect, primarily derivable from the sidewall, is significant in the regions 
close to the periphery (see figure 17b for r = 0.9). For an infinite cylinder, the spin- 
up process is driven mostly by diffusion from the abruptly started cylindrical 
sidewall. The presence of the thermoacoustically excited oscillations is more 
pronounced in the case of an infinite cylinder. As is evident in figure 17, a t  large radii 
the Rayleigh-flow effects are certainly of the same order of magnitude as the endwall 
disk-related dynamic effects (note the difference in scales of the ordinates in figures 
17 ( a )  and 17 ( b ) .  This is in contrast to the case of incompressible spin-up ; it is stressed 
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FIGURE 19. Density, p,  for a finite, closed cylinder of A = 1.0 (shown by solid line) and an infinite 
cylinder (shown by dotted line). M = 5.0 and E = lo4. The axial position of the finite cylinder is 
z = 0. Times are: (a) t = 35.4; ( b )  t = 73.8; (c) t = 98.0. 

that, for an incompressible flow, the contributions resulting from the diffusive effects 
from the solid boundaries are minor over the timescales E - b ' ,  as was ascertained 
by numerical simulations of Hyun et al. (1983), among others. 

A comparison of the radial profiles of angular velocity for a finite closed cylinder 
and an infinite cylinder are displayed in figure 18. Once again, the difference between 
the two results reflects the dynamic effects of the endwall disks. The radial profiles 
of density for the two cases are plotted in figure 19 (note the difference in scales of 
the ordinates). It is clearly seen that the attainment of radial stratification in the 
vicinity of the sidewall during the course of spin-up is substantially more effective in 
a closed cylinder. For both cases, the asymptotic approach to the final state is 
described by Bark et al. (1978) 

p ( r ) / p ( l )  = e x p { W w 2 -  1.w. 

5. Conclusions 
Extensive numerical solutions to the full, time-dependent compressible Navier- 

Stokes equations have been analysed for impulsive spin-up from rest of gas 
contained in a cylinder. Throughout the transient evolution, the dominant azimuthal 
velocities in the interior are mainly uniform in the axial direction. The homogeneous 
spin-up timescale characterizes the global adjustment process of the azimuthal flow. 
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As the peripheral Mach number, M ,  increases, the propagating velocity-shear frontal 
zone is more diffusive, and the rate of spin-up decreass. In  the early phase of spin- 
up, the presence of thermoacoustic disturbances, stemming from the compressible 
Rayleigh effect, is in evidence. This oscillatory behaviour is more pronounced as M 
increases. The strong density stratification in the radial direction is noted at large M .  
Consequently, the fluid in the central portions tends to be rarefied, resulting in 
enhanced viscous effects in those areas. A short time after the cylinder is set into 
motion, the thickness of the Ekman layer increases as radius decreases, but the 
Ekman layer ultimately disappears as the final state of solid-body rotation is 
approached. 
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